

PSCDRV
an EPICS driver toolkit for FPGA designers

Michael Davidsaver
NSLS2 BNL

The Problem

● PGA designers focus on PGA design...
– Controls integration is second thought

● Ideally PGA designer works with programmer
– Reality: Never enough engineers

● NSLS2 PGA developments
– (ramping) Power Supply Controller

– electron Beam Position Monitor

– Cell Controller (fast orbit control network node)
● Active Interlock

The Result

● Different EPICS driver for each application
– asynRecord + aSub records

– modified modbus driver

● Problems
– Reliability and error handling

● TCP connection management
– Restart IOC+reset HW

– Performance
● Single duplex (request/response)
● Under powered MAC (Xilinx Spartan 5)

How to Improve?

● Parts of a PGA system
– Logic (HDL), embedded micro (C), and IOC

● IOC In FPGA?
– One IOC per device

● lots of files, lots of sockets

– Consumes FPGA resources
● Designs expand to fill available

space

How to Improve? (2)

● PGA designers don't like C
– Tried to use streamdevice

● Need to be fast and handle array data
● Make PGA designer self-sufficient

pscdrv overview

● An EPICS driver which is a TCP client
● PSC = Portable Streaming Controller
● Speaks a custom and semi-configurable

protocol
– Not request/response

– Sync. settings from server (device)

● Values are (un)packed from binary messages
into PDB records.

– scalar/array values and HW timestamps

PSC Container Protocol

● TCP stream is a series of binary messages
– Fixed 8 byte header w/ variable length body

● Message body is determined by configuration

Streaming

Device to IOC stream and IOC to Device stream are independent.

Not request response

IOC setup

● In IOC start script

createPSC(“NAME”, “10.0.0.1”, 4321, 1)

setPSCSendBlockSize(“NAME”,20,32)

Reading a Scalar

record(ai, “recname”) {

field(DTYP, “PSC Reg”)

field(SCAN, “I/O Intr”)

field(INP, “@NAME 15 8”)

}

● When a message with ID #15 arrives.

● Extract 4 bytes starting at offset 8

● Interpret as a 32-bit signed MSB integer

Read from incoming message as I32.
Also “PSC Reg F32”.

Scan when the message arrives

PSC device name

Message ID Byte offset into message body

Other operations

● (Un)pack many scalar values from a message
– A block of registers which are all read/written

together

– 32-bit integer, 32 and 64-bit IEEE floating point

● Send single scalar values with an address
– Address is 4 byte sub-header

– IOC to device for settings

– device to IOC to re-sync. info(“SYNC”,”SAME”)

Other operations (2)

● Extract record timestamp from message
– 2x 32-bit integers sec+ns (posix epoch)

● (Un)pack array data
– Variable length

– Contiguous or interleaved

– Integer: 8, 16, 32 Float: 32, 64

info(“TimeFromBlock”,”12”)

field(INP, “@NAME 15 8 8”)

of bytes between array elements
including element size.

Array Example

record(waveform, “wf:X”) {

field(“DTYP”,”PSC Block I16 In”)

field(“SCAN”,”I/O Intr”)

field(“FTVL”,”DOUBLE”)

field(“NELM”,”1024”)

field(“INP”,”NAME 15 8 4”)

info(“TimeFromBlock”,”0”)

}

End

● Semi-generic TCP protocol and EPICS driver
● Intended to enable PGA designers to build

fast and reliable IOCs.
● Future work

– targetApp reference implementation of a PSC
server

http://mdavidsaver.github.io/pscdrv/

Teasers

● carchivetools – Archive clients
– https://github.com/epicsdeb/carchivetools

● pyDevSup - device support in python
– http://mdavidsaver.github.io/pyDevSup/

● alarmmailer – email alarm aggregation
● cashark – wireshark dissector for CA
● ioclogserv2 – log server w/ rotation and filter
● cahtml – CA aware django templates

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

